X

ADVANCED MODELING AND SIMULATION SEMINAR SERIES

—

(intel)’ Look Inside’”

The Parallel Research Kernels, a tool for
parallel systems investigations - Part II
(https://github.com/ParRes/Kernels)

Rob Van der Wijngaart

Evangelos Georganas

programming environment (ProgEnv: programming model + API

+ compiler + runtime) ' r II
| o

*Parallel system=hardware system+network stack+0OS+parallel mlllH

Agenda

« Background/Motivation
« Particle-In-Cell kernel
- Adaptive Mesh Refinement kernel

Parallel Research Kernels (PRK)

Create test suite to study behavior or parallel systems

= Cover broad range of patterns found in real parallel applications

Provide paper-and-pencil specification and generic reference
implementations

Ensure each kernel does some real work

Keep kernels simple functionally
- Easy porting to new runtimes/languages
- Easy to understand by different domain scientists
- Dominated by single feature, so convenient performance building block

Parameterize kernels (problem size, iterations, # cores etc.)

Include automatic verification test (analytical solution)

Make sure kernels can be load balanced (enough concurrency)

H

Motivation to add kernels

= Initially PRK intended as architectural stress tests, not to
compare runtimes
- No insight into platform by studying fundamentally unbalanced load
- Our solution: make kernels trivially statically load balanced

= However, exascale will require dynamic load balancing for
mature workloads + system/network fluctuations
- Balance load: ensure workers reach synchronization points at same time
- Balance work: assign same amount of computational work to workers

= GOAL: Design and implement new kernels that:
- Require dynamic load balancing at all system scales (algorithmic source)
- Allow control of amount and frequency of workload adaptation

- Have data dependencies, so load-balancing is non-trivial; improving load-
balance usually increases communication

» Usage: Research vehicle to stress dynamic load-balancing
capabilities of parallel runtimes

ﬂ

Algorithmic sources of dynamic
load imbalance

Type I: Evolving mismatch between two (often
distributed) data structures

= Sijze of data structures constant

= Dependency between data structures

= No efficient static decomposition

Type II: Work changes intermittently (dis/appears)

= Size of data structures changes

= New work depends on subset of existing data structure

= Equal distribution of new work among existing
resources breaks locality + decreases granularity

ﬂ

Type I: Simple Particle-In-Cell (PIC)
= 2D regular mesh with periodic boundaries GOOGO..G..B..Q..

= Fixed charges at mesh points. No assumptions
regarding charge distribution

= N particles, each with its own charge. No
assumptions regarding particle distribution

= T discrete time steps of duration dt
= No interactions among moving particles

= Particles only interact with four charges at
corners of containing cell

= Compute total Coulomb force F,, On particle,
corresponding to acceleration a: a= Fi /M

= Given velocity v, position x, and acceleration a of a
particle at time t, compute v and x at time t+dt:

" X< X+ vdt + 2 a dt?

" V<V+ adt

Initialization

= Alternate charges: Columns with even index have charge +q, columns
with odd index have charge —-q

= Put particles on horizontal axis of symmetry of cells

= Given the relative position x; of particle i, assign charge q;:
q; = h / (q (cosB/d;? + cosp/d,?))
= At time t+1 particle has shifted one cell, force reversed direction

= At time t+2 particle has shifted two cells, velocity and force identical to
those at time t

Verification

Verification requirements/challenges:

1. Simple and short: don’t take more time or memory than actual
experiment.

2. Tight enough to catch even minor implementation errors, but not
too tight (no bitwise accuracy)

3. Not relying on statistics (inaccurate for short/small experiments)
Actual verification

= Given initial coordinates (X, , Y,) and velocity (0, z*h), final
coordinates after T steps (modulo grid size) given by:

oXt =X+ hT
oY1 =Yo+zhT

= Assign unique id to each particle. Checksums of particle ids
at and end of simulation must match.

= Verification test catches even a single miscalculated force or
misplaced particle

ﬂ

Load imbalance

= Nonuniform initial particle distribution makes simulation
unbalanced; no static decomposition is efficient

= Uneven particle cloud moves through domain, requiring
rebalancing

- Frequency of needed rebalancing controlled by cloud speed

= Example initial particle
distribution:

o Column i of grid cells contains p(i)
particles, where p(i) = A * r

oVarying r makes distribution
arbitrarily unbalanced

or =1 recovers uniform distribution

Number of particles

ID of cell-column

ﬂ

Example of 1D diffusion scheme

Example of 1D diffusion scheme

o,
*e.
-
B
X
oe,
e,
-
..
°
o,
®e.
=
o,
X
e

Runtime-based load balancing with

Adaptive MPI (AMPI)

= AMPI: Multiple ranks (user-level threads) per process,

typically one process per physical processor

= AMPI uses Charm++ scheduler for execution of ranks

= Approach: Over-decompose domain. AMPI migrates ranks

across processors for load balancing

= Minimal changes to original static MPI implementation
(serialization routines for dynamic data structures)

Migration of rank 13

i

1

N

o

7%

Source: AMPRI tutorial
Melania Trump

Example with Adaptive MPI

= Over-decompose domain to 16 ranks (on 4 processes)

| leSlee[Sl2f2e] Je [[e] [| [[

o,
*e.
-
B
X
oe,
e,
-
..
°
o,
®e.
=
o,
X
e

ﬂ

ool ol [[loellleelSl [[loof

NN
S0E8880| -~ DEILBTEM |
ole oo [[I [[IsSleTo]®)

I
28HLee - IHTeeedl

pelelo ool Jol [of [Toloed [oY
WG@G@GﬁOWBGBOBGQ

o

HEGHDANHEANNHEHXED,

Example with Adaptive MPI
Load balancer decides how to place/migrate ranks to processes

L L el L el g0 02 ee®e J

OIS ~ BESSOHXY

-
o2
[[Sleel | [Milibelilee] [[[S1f
J
kS

GHXXE| o PSS

002 lool® (o ° laal® (o0l l00 [oa® (o

SRATN © POEERTED

Example with Adaptive MPI
Load balancer decides how to place/mlgrate ranks to processes

Distributed memory "weak” scaling

- 48 cores: 12K? grid, 400K particles, 6K time steps; r= 0.999
- Increase number of cores and number of particles proportionally
- Load balancers: ampi: greedy, mpi-2d-LB: diffusion, mpi-2d: none

128 T - T
mp|-2d lll‘lll
ampl snnafunn
MpPi-2d-LB =sesgusss
64 | .4 | @ampi: N
-“*IlIIIIIIIIIIIIIIIIIIIII.- ° Ove r_decom pOSItI On = 4
7)) &---llllllllllllllll-l" © frequency — 1/500, 1/250
2 “Nmmmmmm' ¢
$ | « quantum = 16 columns
elp® ‘:‘“_,-‘_“.‘-“" o frequency = 1/4
16 !"--"l:) .
g ! ' '
48 192 768 3072

Number of Cores

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance

of that product when combined with other products.
For more complete information visit http://www.intel.com/performance @H

Why Adaptive Mesh Refinement?

Limitations of PIC kernel (Type I dynamic load imbalance)

= Total amount of work constant; often work comes and goes in
chunks: in situ visualization, AMR, computational steering, etc.

= Source of load imbalance is constant; no abrupt and/or
unpredictable variations in load

= No analytical solution for aimost all mesh sizes, initial particle
placements, time steps, particle and grid charges

= relies on infinite precision or cancelling of rounding errors
= can become chaotic

Fix: derive new kernel from Stencil PRK and AMR
workloads (Type II)

= Has intermittent, abrupt introduction/removal of chunks of work

= Final solution continuous function of initial solution

ﬂ

Stencil kernel, BG Stencil S(R)
with refinement grid Re2 Out+=S(R) In

v
-

BG = Background Grid

B

Stencil kernel, BG
with refinement grid

G = Background Grid

Stencil S(R)

R=2 Out += S(R) In

Refinement issues:

How to ensure simple
analytical solution?
How should BG and
refinement interact?
How to avoid spending
much time/effort on
interpolation?

How to avoid complicated
path computation/bdry
intersection?

How to preserve
refinement history?
How to vary amount/
extent of refinement?
How to vary frequency/
duration of refinement?

Stencil kernel, BG Stencil S(R)
with refinement grids Re2 Out+=S(R) In

11 1 Refinement scenario:
92 g « Align BG and refinements
« Interpolate initial values
on refinements from BG
« Keep refinements in
place, but (de)activate
cyclically
« Save state of all
refinements
« Make refinements mesh
size power-of-two of BG
« Define refinements in
terms of BG cells
« Define refinements
period/duration in terms
of BG time steps
« Prescribe # iterations on
90 93 refinements per BG
iteration

BG = Background Grid

Reference implementations

= Application level dynamic load balancing (usually MPI)

o Possible to distribute work of new refinement without global
repartitioning?

= Runtime orchestrated dynamic load balancing (e.g.
AMPI)

o Employs static partitioning with over-decomposition

MPI (dynamic) load balancing;
dumb and dumber—and dumbest

ﬂNE_GRAIN: partition BG and refinements completely among all ranks \

. Split BG evenly among all ranks

. When refinement appears, split evenly among all ranks
NO_TALK: minimize communication
. Split BG evenly among all ranks

. When refinement aEpears, split into pieces coinciding with BG partitioning and
assign to same ran

HIGH_WATER: partition BG plus one refinement together statically
. Each rank receives exactly one subset of one of the grids at a time
NO_TALK_MULTI: same as NO_TALK, but over-decomposed

QGH_WATER_MULTI: same as HIGH_WATER, but over-decomposed /

[NO_TALK_CORNER_CASE: shrink BG partitions towards refinement }

AMNESIA: repartition each configuration from scratch (all-to-all)

Dynamic decomposition @

uoljisodwodap d1ne1s

FINE_GRAIN

. « Static decomposition
« Perfect load balance

« Good if BG work <
work on refinements,
may become very
fine-grain otherwise

« Poor inter-grid-level
locality

ﬂ

Color = rank

NO_TALK

« Static decomposition

« Perfect inter-grid-
level glocality

« Perfect load balance
between refinements

« Very poor load
balance during
refinements if work
on refinements
substantial

 Fine if work on
refinements very
small

Color = rank

ﬂ

HIGH_WATER

« Static decomposition
« Perfect load balance
during refinement

« Better granularity
than FINE_GRAIN

« Very poor load
balance between
refinements,
especially if BG work
< refinement work

* No inter-grid-level
locality

Color = rank

ﬂ

NO_TALK_MULTI

« Perfect inter-grid-
level locality

« Perfect load balance
between refinements

 Poor load balance
during refinements if
work on refinements
substantial

« Finer-grained than
NO_TALK

Color = worker

H

HIGH_WATER_MULTI

« Static decomposition

« Possibility for decent
locality (depends on
assignment quality)

« Poor load balance
during refinements

« Perfect load balance
between refinements

« Finer-grained than
HIGH_WATER

Color = worker

NO_TALK_CORNER_CASE

 Dynamic
decomposition

« Perfect inter-grid-
level locality

« Perfect load balance
between refinements

Color = rank

H

NO_TALK_CORNER_CASE

 Dynamic
decomposition

« Perfect inter-grid-
level locality

« Perfect load balance
between refinements

« Better load balance
during refinements
than NO_TALK

« More communication
to repartition BG

Color = rank

ﬂ

NO_TALK_CORNER_CASE

 Dynamic
decomposition

« Perfect inter-grid-
level locality

« Perfect load balance
between refinements

« Better load balance
during refinements
than NO_TALK

« More communication
to repartition BG

Color = rank

H

NO_TALK_CORNER_CASE

 Dynamic
decomposition

« Perfect inter-grid-
level locality

« Perfect load balance
between refinements

« Better load balance
during refinements
than NO_TALK

« More communication
to repartition BG

Color = rank

ﬂ

NO_TALK_CORNER_CASE

 Dynamic
decomposition

« Perfect inter-grid-
level locality

« Perfect load balance
between refinements

« Better load balance
during refinements
than NO_TALK

« More communication
to repartition BG

Color = rank

ﬂ

Conclusions

= PIC

o Useful for comparing user-level and runtime-orchestrated dynamic load
balancing of constant-work applications

= AMR

o Tough case to parallelize using runtime-orchestrated dynamic load
balancing

o Is based on static partitioning with over-decomposition

o When over-decomposition mitigates dynamic load imbalance, static
mapping suffices

= Overall
o AMR better proxy for localized system noise

o Does not benefit from runtime-orchestrated dynamic load balancing

> Local work increase cannot be absorbed locally unless workload already
unbalanced before disturbance

ﬂ

Backup

Multiple nodes experiments

= Strong scaling experiment on Edison:
- 2,999 x 2,999 grid, 600,000 particles (r = 0.999) and 6,000 time steps

T
mpi_zd lll‘lll
AO,'. ampl snnaunn
L o s TR TR B = N a
32 ‘ 00," mp|-2d-LB llll‘lllw
o, '0,'
(N L/
o %
®e, . %," 0,
* ®, '."0 L
e, 2, o
16 [e T e .
2, @, Y,
% ."'0 '.."0 "
2, o,
c %0, N .
(o] "., o, "0,.
o RN e e,
o 8+ S -
w 0.. ¥y N 0'.
o0, Y, ..'0,'
L/ () @,
"g '..':"
(N o,
'00, ..' ',' oy .
00"' O.,' Yy, g,
4 USSR Qg T o |
'.'. 0,'.
*' '0, A
'....
'..
"'
'...
.,....
2 | | | |
24 48 96 192 384

Number of Cores

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance

of that product when combined with other products.
For more complete information visit http://www.intel.com/performance @H

AMR Specification details

Parameters
= T : total number of iterations (background grid)
= R: radius of difference stencil

* n: linear dimension of square background grid (n2 points, mesh
spacing is unity)

= r: refinement level (mesh size of refined grid is 27")

= k: linear dimension of refinement in terms of BG cells ((k=2" +1)2
points in each refinement)

= P : duration in terms of iterations on the BG of one full cycle of
activation of one refinement until that of the next (period)

= D: duration in terms of iterations on the BG of activity on each
refinement; D < P

= d: number of iterations on a refinement per iteration on the BG

ﬂ

AMR Specification details

(Re-)initialization
= In[0](x,y) = cx+cyy

2 %_nithr ¢ (In[t]), with ¢ bi-linear interpolation (exact for linear
ie

Update
= Increase In and In; by constant after each stencil application
Verification

= S is numerical equivalent of V (exact for linear field):
v(cx+cy + const) = c,+c,

= Count number of iterations n; on g; = Out[T](x,y) = n;*(c,+c,)
= Out[T](x,y) = T*(c,+cC))
= In[t](x,y) = cx+cy + t, so: In[T](x,y) = (¢, +c)(n-1)/2 + T

= Count number of updates v, on g; since last interpolation at time
0— In[TI(x,y) = (C,+C,)¥k/2 + v, + f(corner;) + 6,

corner; = coordinates of bottom left corner point of g @

Three example AMR scenarios

1. n=1000, 10 workers, r=1, k=100, P=3, D=1, d=1.
Refinement has 1% of work of BG Iasts 1 |terat|on then
waits for 2 iterations until next refinement. OK to add
refinement work to worker covering same part of BG (~10%
load imbalance)

2. n=1000, 100 workers, r=1, k=100, P=3, D=1, d=1. Not OK
to add refinement work to worker coverlng same part of BG
§100% load imbalance). Rapid (dis)appearance requires
requent load balancing

3. n=1000, 100 workers, r=4, k=6, P=30, D = 10, d = 5.
Refinements ®number of grid points as in scenario 1, but
cover much smaller fraction of the BG; activated 10x slower
than in that case, persist 50x longer, so automatic load
balancing may respond effectively to changes in load

ﬂ

